Lean Inventory :Supply Chain Operations (Supply Chain Operations) Answers 2026
đ Example Input Data (Illustrative)
| Product | Annual Demand (D) | Ordering Cost (S) | Holding Cost (H) | Lead Time (days) | Ī Demand (per day) | Ī Lead Time (days) |
|---|---|---|---|---|---|---|
| A | 10,000 | 500 | 20 | 5 | 8 | 1 |
| B | 8,000 | 400 | 25 | 6 | 6 | 1.2 |
| C | 12,000 | 600 | 18 | 4 | 9 | 0.8 |
| D | 6,000 | 450 | 30 | 7 | 5 | 1.5 |
| E | 15,000 | 700 | 22 | 3 | 10 | 0.5 |
Assume:
-
Working days per year = 250
-
Z-values:
-
95% â 1.65
-
97.5% â 1.96
-
đ§Ž Example Calculations (Using This Data)
Q1 â Product A: Total Cost (Holding + Ordering)
EOQ = â(2DS / H)
= â(2Ã10,000Ã500 / 20)
= 707
-
Ordering cost = (D / EOQ) Ã S = (10,000 / 707) Ã 500 â 7,072
-
Holding cost = (EOQ / 2) Ã H = (707 / 2) Ã 20 â 7,070
â Total Cost â 14,142
Q2 â Product B: Inventory Holding Cost
EOQ = â(2Ã8000Ã400 / 25) â 506
Holding cost = (506 / 2) Ã 25 â
â
6,325
Q5 â Product E: EOQ
EOQ = â(2Ã15,000Ã700 / 22)
â
977
Q6 â Product A: Combined Std Dev (Demand + Lead Time)
Formula:
Ī=(LĪd2)+(Dd2ĪL2)\sigma = \sqrt{(L\sigma_d^2) + (D_d^2\sigma_L^2)}
-
Daily demand = 10,000 / 250 = 40
Ī = â(5Ã8² + 40²Ã1²)
= â(320 + 1600)
= â1920 â 44
â Answer: 44
Q7 â Product B: Safety Stock (97.5%)
Ī â â(6Ã6² + 32²Ã1.2²) â 43
Safety stock = 1.96 Ã 43 â
â
84
Kanban Bin Size (Example â Product A)
Kanban = Demand during lead time + Safety stock
= (40 Ã 5) + (1.65 Ã 44)
= 200 + 73
â
273