Quiz 2:Statistical Inference(Data Science Specialization):Answers2025
Question 1
What is the variance of the sample mean of n iid observations (population var = σ²)?
❌ σ²
✅ σ² / n
❌ σ / n
❌ 2σ / √n
Explanation: Variance of the mean of n IID draws = Var( (1/n)∑Xᵢ ) = σ² / n.
Question 2
DBP ~ N(μ=80, σ=10). P(DBP < 70)?
❌ 8%
❌ 32%
❌ 22%
✅ 16%
Explanation: z = (70−80)/10 = −1. Φ(−1) ≈ 0.1587 ≈ 16%.
Question 3
Women brain volume ~ N(1100, 75). 95th percentile?
❌ ~1175
❌ ~1247
❌ ~977
✅ ~1223
Explanation: 95th percentile z ≈ 1.645 → 1100 + 1.645·75 ≈ 1223.4 → ≈1223.
Question 4
Sample mean of n=100 women (σ=75). 95th percentile of sample mean?
❌ ~1088 cc
❌ ~1110 cc
✅ ~1112 cc
❌ ~1115 cc
Explanation: SE = 75/√100 = 7.5. 95th percentile = 1100 + 1.645·7.5 ≈ 1112.34 → ≈1112 cc.
Question 5
Flip fair coin 5 times. P(4 or 5 heads)?
❌ 12%
❌ 6%
❌ 3%
✅ 19%
Explanation: P = [C(5,4)+C(5,5)] / 2⁵ = (5+1)/32 = 6/32 = 0.1875 ≈ 18.75% ≈ 19%.
Question 6
RDI mean=15, sd=10 (not normal). For sample mean of n=100, P(14 < x̄ < 16)?
❌ 34%
✅ 68%
❌ 95%
❌ 47.5%
Explanation: By CLT, SE = 10/√100 = 1. Interval ±1 SD → P(|Z|<1) ≈ 0.6827 → ≈68%.
Question 7
Standard uniform mean=0.5, var=1/12. Sample mean of 1000 obs — expected near?
❌ 0.25
❌ 0.10
❌ 0.75
✅ 0.5
Explanation: Sample mean is unbiased; with large n it concentrates near population mean 0.5.
Question 8
Poisson(5 per hour). Observe 3 hours → Poisson(λ=15). P(X ≤ 10)?
✅ 0.12
❌ 0.08
❌ 0.06
❌ 0.03
Explanation: Approx normal: mean=15, sd=√15≈3.873. z ≈ (10.5−15)/3.873 ≈ −1.16 → Φ(−1.16) ≈ 0.12. So ≈0.12.
🧾 Summary Table
| Q# | ✅ Correct Answer | Key concept |
|---|---|---|
| 1 | σ² / n | Variance of sample mean of n IID draws |
| 2 | 16% | z=(70−80)/10 = −1 → Φ(−1) ≈ 0.1587 |
| 3 | ≈1223 | 1100 + 1.645·75 ≈ 1223 |
| 4 | ≈1112 | SE=75/√100=7.5 → 1100+1.645·7.5 ≈1112 |
| 5 | 19% | (5+1)/32 = 6/32 = 0.1875 |
| 6 | 68% | CLT, SE = 10/√100 =1 → P( |
| 7 | 0.5 | Sample mean ≈ population mean |
| 8 | 0.12 | Poisson(15) approximate via normal → ≈0.12 |