Final Exam: Generative AI for Data Science :Generative AI: Elevate Your Data Science Career(IBM Data Analyst Professional Certificate) Answers 2025
1️⃣ Question 1
Purpose of GANs?
-
❌ Coherent text
-
❌ Music generation
-
❌ High-quality images (GANs do this, but not the primary definition)
-
✅ Creating realistic data samples
Explanation:
GANs generate realistic synthetic data, including images, videos, and more.
2️⃣ Question 2
How does generative AI help data science professionals?
-
❌ Synthesize medical images
-
❌ Generate game levels
-
❌ Generate text
-
✅ Augment datasets with synthetic data
3️⃣ Question 3
Tool for image data augmentation:
-
❌ Dialogflow
-
❌ Autoencoders
-
❌ Magenta
-
✅ CycleGAN
4️⃣ Question 4
How generative AI helps in idea generation during problem definition:
-
❌ Filling missing values
-
❌ Monitor drift
-
❌ Generate adversarial cases
-
✅ Mimicking existing product descriptions / marketing content
5️⃣ Question 5
Generative AI model good for sequential data:
-
❌ Flow-based
-
❌ VAEs
-
✅ Autoregressive models
-
❌ GANs
6️⃣ Question 6
Model generating coherent text (poetry, scripts, emails):
-
❌ VAEs
-
✅ Autoregressive models (e.g., GPT)
-
❌ Flow-based
-
❌ GANs
7️⃣ Question 7
Model that generates data adhering to original distribution:
-
❌ GANs
-
❌ VAEs
-
✅ Flow-based models
-
❌ Autoregressive
8️⃣ Question 8
Data consideration for generative AI:
-
❌ Interpretability
-
❌ Bias mitigation
-
❌ Ethical mechanisms
-
✅ Privacy, encryption, access control
9️⃣ Question 9
Tool for semi-structured data augmentation (text descriptions & code):
-
❌ StyleGAN2
-
❌ CTGAN
-
❌ SDV
-
✅ Copilot
🔟 Question 10
Correct prompt for the SQL update:
-
✅ Replace the zero values in the ZN column with NULL.
-
❌ Find null values
-
❌ Find zero rows
-
❌ Update all values
1️⃣1️⃣ Question 11
How generative AI improves imputation:
-
❌ Outlier detection
-
❌ Language translation
-
❌ Latent code
-
✅ Learns patterns and generates plausible missing values
1️⃣2️⃣ Question 12
Cultural challenge:
-
❌ Data quality
-
❌ Lack of standardization
-
❌ Copyright
-
✅ Trust and transparency
1️⃣3️⃣ Question 13
Visualization to verify outliers:
-
❌ Color coding
-
❌ Histograms
-
❌ Annotation
-
✅ Box plots
1️⃣4️⃣ Question 14
Open-source AutoML library:
-
✅ AutoGluon
-
❌ H2O Driverless AI
-
❌ Vertex AI
-
❌ DataRobot
1️⃣5️⃣ Question 15
Analysis to identify patterns for deeper investigation:
-
❌ Feature engineering
-
❌ Bivariate
-
❌ Univariate
-
✅ Hypothesis generation
1️⃣6️⃣ Question 16
Model consideration technique improving interpretability:
-
❌ Imaging data
-
✅ Feature attribution
-
❌ Perpetuate biases
-
❌ Manipulative inputs
1️⃣7️⃣ Question 17
Organizational challenge:
-
❌ Continuous learning
-
❌ Data quality
-
❌ Risk aversion
-
✅ Change management
1️⃣8️⃣ Question 18
Simulation & data-augmentation tool:
-
❌ Jukebox
-
❌ Autoencoders
-
✅ Unity ML-Agents
-
❌ StyleGAN
1️⃣9️⃣ Question 19
Anomaly-detection generative AI tool:
-
❌ DALL•E
-
❌ CycleGAN
-
❌ Dialogflow
-
✅ Isolation Forest
2️⃣0️⃣ Question 20
How generative AI helps in data exploration & preparation:
-
❌ Generate new features
-
❌ Recommendations
-
❌ Detect anomalies only
-
✅ Data augmentation: fill missing values, handle outliers, generate synthetic data
🧾 Summary Table
| Q | Correct Answer |
|---|---|
| 1 | Creating realistic data samples |
| 2 | Synthetic data augmentation |
| 3 | CycleGAN |
| 4 | Mimicking product descriptions |
| 5 | Autoregressive models |
| 6 | Autoregressive models |
| 7 | Flow-based models |
| 8 | Privacy & data access controls |
| 9 | Copilot |
| 10 | Replace zero with NULL |
| 11 | Generate plausible missing values |
| 12 | Trust & transparency |
| 13 | Box plots |
| 14 | AutoGluon |
| 15 | Hypothesis generation |
| 16 | Feature attribution |
| 17 | Change management |
| 18 | Unity ML-Agents |
| 19 | Isolation Forest |
| 20 | Data augmentation & prep |