Skip to content

Final Exam: Generative AI for Data Science :Generative AI: Elevate Your Data Science Career(IBM Data Analyst Professional Certificate) Answers 2025

1️⃣ Question 1

Purpose of GANs?

  • ❌ Coherent text

  • ❌ Music generation

  • ❌ High-quality images (GANs do this, but not the primary definition)

  • Creating realistic data samples

Explanation:
GANs generate realistic synthetic data, including images, videos, and more.


2️⃣ Question 2

How does generative AI help data science professionals?

  • ❌ Synthesize medical images

  • ❌ Generate game levels

  • ❌ Generate text

  • Augment datasets with synthetic data


3️⃣ Question 3

Tool for image data augmentation:

  • ❌ Dialogflow

  • ❌ Autoencoders

  • ❌ Magenta

  • CycleGAN


4️⃣ Question 4

How generative AI helps in idea generation during problem definition:

  • ❌ Filling missing values

  • ❌ Monitor drift

  • ❌ Generate adversarial cases

  • Mimicking existing product descriptions / marketing content


5️⃣ Question 5

Generative AI model good for sequential data:

  • ❌ Flow-based

  • ❌ VAEs

  • Autoregressive models

  • ❌ GANs


6️⃣ Question 6

Model generating coherent text (poetry, scripts, emails):

  • ❌ VAEs

  • Autoregressive models (e.g., GPT)

  • ❌ Flow-based

  • ❌ GANs


7️⃣ Question 7

Model that generates data adhering to original distribution:

  • ❌ GANs

  • ❌ VAEs

  • Flow-based models

  • ❌ Autoregressive


8️⃣ Question 8

Data consideration for generative AI:

  • ❌ Interpretability

  • ❌ Bias mitigation

  • ❌ Ethical mechanisms

  • Privacy, encryption, access control


9️⃣ Question 9

Tool for semi-structured data augmentation (text descriptions & code):

  • ❌ StyleGAN2

  • ❌ CTGAN

  • ❌ SDV

  • Copilot


🔟 Question 10

Correct prompt for the SQL update:

  • Replace the zero values in the ZN column with NULL.

  • ❌ Find null values

  • ❌ Find zero rows

  • ❌ Update all values


1️⃣1️⃣ Question 11

How generative AI improves imputation:

  • ❌ Outlier detection

  • ❌ Language translation

  • ❌ Latent code

  • Learns patterns and generates plausible missing values


1️⃣2️⃣ Question 12

Cultural challenge:

  • ❌ Data quality

  • ❌ Lack of standardization

  • ❌ Copyright

  • Trust and transparency


1️⃣3️⃣ Question 13

Visualization to verify outliers:

  • ❌ Color coding

  • ❌ Histograms

  • ❌ Annotation

  • Box plots


1️⃣4️⃣ Question 14

Open-source AutoML library:

  • AutoGluon

  • ❌ H2O Driverless AI

  • ❌ Vertex AI

  • ❌ DataRobot


1️⃣5️⃣ Question 15

Analysis to identify patterns for deeper investigation:

  • ❌ Feature engineering

  • ❌ Bivariate

  • ❌ Univariate

  • Hypothesis generation


1️⃣6️⃣ Question 16

Model consideration technique improving interpretability:

  • ❌ Imaging data

  • Feature attribution

  • ❌ Perpetuate biases

  • ❌ Manipulative inputs


1️⃣7️⃣ Question 17

Organizational challenge:

  • ❌ Continuous learning

  • ❌ Data quality

  • ❌ Risk aversion

  • Change management


1️⃣8️⃣ Question 18

Simulation & data-augmentation tool:

  • ❌ Jukebox

  • ❌ Autoencoders

  • Unity ML-Agents

  • ❌ StyleGAN


1️⃣9️⃣ Question 19

Anomaly-detection generative AI tool:

  • ❌ DALL•E

  • ❌ CycleGAN

  • ❌ Dialogflow

  • Isolation Forest


2️⃣0️⃣ Question 20

How generative AI helps in data exploration & preparation:

  • ❌ Generate new features

  • ❌ Recommendations

  • ❌ Detect anomalies only

  • Data augmentation: fill missing values, handle outliers, generate synthetic data


🧾 Summary Table

Q Correct Answer
1 Creating realistic data samples
2 Synthetic data augmentation
3 CycleGAN
4 Mimicking product descriptions
5 Autoregressive models
6 Autoregressive models
7 Flow-based models
8 Privacy & data access controls
9 Copilot
10 Replace zero with NULL
11 Generate plausible missing values
12 Trust & transparency
13 Box plots
14 AutoGluon
15 Hypothesis generation
16 Feature attribution
17 Change management
18 Unity ML-Agents
19 Isolation Forest
20 Data augmentation & prep