Skip to content

Graded Quiz: Data Wrangling :Data Analysis with Python (IBM Data Analyst Professional Certificate) Answers 2025

1. Question 1

Method to replace missing values for continuous attributes:

  • ❌ Educated guess

  • ❌ Mean square error

  • ❌ Min–max difference

  • ✅ Use the average of the other values in the column

Explanation:

For continuous variables, the most common imputation method is using the mean (average).


2. Question 2

First step when deciding bin values for continuous data:

  • ❌ Divide average by standard deviation

  • ✅ Visualize the distribution (e.g., histogram)

  • ❌ Convert object types

  • ❌ Use IQR

Explanation:

You must first understand the distribution before creating bins.


3. Question 3

Most appropriate data type for city names like “N.Y.”, “Ny”, “New York”:

  • ✅ object

  • ❌ float

  • ❌ DataFrame

  • ❌ int

Explanation:

Non-numeric text values in Pandas are stored as object type.


4. Question 4

Primary purpose of normalization:

  • ❌ Make all features identical

  • ❌ Remove outliers

  • ✅ Ensure features have similar ranges for fair comparison

  • ❌ Remove missing values

Explanation:

Normalization adjusts scale, preventing large-range features from dominating.


5. Question 5

Converting categorical values into numerical values:

  • ❌ Convert numerical to categorical

  • ✅ Turns categorical values into numerical values

  • ❌ Bin values

  • ❌ Change data type manually

Explanation:

Encoding transforms categories into machine-learning friendly numbers.


6. Question 6

First step in data preparation:

  • ✅ Cleaning missing or inconsistent values

  • ❌ Normalizing values

  • ❌ Running ML models

  • ❌ Encoding categorical variables

Explanation:

Cleaning always comes first to ensure data reliability.


7. Question 7

Prepare “fuel type” column (gas/diesel) for model training:

  • ❌ cut()

  • ✅ get_dummies()

  • ❌ dropna()

  • ❌ astype()

Explanation:

get_dummies() performs one-hot encoding for categorical variables.


8. Question 8

Convert “N/A” text entries into actual NaN values:

  • ✅ replace()

  • ❌ astype()

  • ❌ dropna()

  • ❌ fillna()

Explanation:

Use replace("N/A", np.nan) to convert string placeholders to true missing values.


🧾 Summary Table

Q Correct Answer Key Concept
1 Mean imputation Continuous missing value handling
2 Visualize distribution Bin selection
3 object Text data storage
4 Similar feature ranges Normalization purpose
5 Encode categories → numbers ML preprocessing
6 Clean data first Data pipeline
7 get_dummies() One-hot encoding
8 replace() Converting placeholders to NaN