Prerequisite Qualification: Optimization :Introduction to Financial Engineering and Risk Management (Introduction to Financial Engineering and Risk Management) Answers 2025
Question 1
Correct statements:
❌ Alice does not need to specify short position, since long-only strategy will generate the same result as strategy allowing short positions.
✅ Alice should use the positions in each portfolio as variables.
✅ Alice should specify whether short position is allowed by constraints.
Question 2
Primal:
mincTxs.t. Ax≥b\min c^T x \quad \text{s.t. } Ax \ge b
Dual objective is:
maxbTu\max b^T u
Here b=[1,1]Tb = [1,1]^T
✅ u1+u2u_1 + u_2
Question 3
Dual constraints come from:
ATu=c,u≥0A^T u = c,\quad u \ge 0
Correct constraints:
✅ u1≥0u_1 \ge 0
✅ u2≥0u_2 \ge 0
❌ −u1+u2=−1-u_1 + u_2 = -1
❌ u1+2u2=1u_1 + 2u_2 = 1
Question 4
From Question 3 constraints:
u1≥0,u2≥0u_1 \ge 0,\quad u_2 \ge 0
Using ATu=cA^T u = c, solution gives:
u1=1, u2=0u_1 = 1,\; u_2 = 0
Optimal value:
bTu=1b^T u = 1
✅ Answer: 1
Question 5
Correct statements:
✅ If f(y)≥f(x∗)f(y) \ge f(x^*) for any y∈Rny \in \mathbb{R}^n, then x∗x^* is the global minimum.
❌ Local condition for all r>0r>0 implies global minimum, not “local but not global”
✅ Global minimum must also be local minimum.
✅ If inequality holds in a neighborhood ∥y−x∗∥≤r\|y-x^*\|\le r, then x∗x^* is a local minimum.
Question 6
f(x1,x2)=x12+2x1x2+x23f(x_1,x_2)=x_1^2+2x_1x_2+x_2^3
Gradient = 0 ⇒ critical point at (0,0)(0,0)
f(0,0)=0f(0,0)=0
✅ Local minimum value = 0.00
Question 7
Maximize:
lnx1+lnx2s.t. 2×1+3×2=6\ln x_1 + \ln x_2 \quad \text{s.t. } 2x_1+3x_2=6
Using Lagrange multiplier:
x1=1.5,x2=1x_1=1.5,\quad x_2=1 fmax=ln(1.5)+ln(1)=ln(1.5)f_{\max}=\ln(1.5)+\ln(1)=\ln(1.5) ln(1.5)≈0.41\ln(1.5)\approx 0.41
✅ Global maximum value = 0.41
Final Answers Summary
| Question | Answer |
|---|---|
| Q1 | Options 2, 3 |
| Q2 | u1+u2u_1 + u_2 |
| Q3 | u1≥0, u2≥0u_1 \ge 0,\; u_2 \ge 0 |
| Q4 | 1 |
| Q5 | Options 1, 3, 4 |
| Q6 | 0.00 |
| Q7 | 0.41 |