Skip to content

Prerequisite Qualification: Optimization :Introduction to Financial Engineering and Risk Management (Introduction to Financial Engineering and Risk Management) Answers 2025

 

Question 1

Correct statements:

❌ Alice does not need to specify short position, since long-only strategy will generate the same result as strategy allowing short positions.

Alice should use the positions in each portfolio as variables.

Alice should specify whether short position is allowed by constraints.


Question 2

Primal:

min⁡cTxs.t. Ax≥b\min c^T x \quad \text{s.t. } Ax \ge b

Dual objective is:

max⁡bTu\max b^T u

Here b=[1,1]Tb = [1,1]^T

u1+u2u_1 + u_2


Question 3

Dual constraints come from:

ATu=c,u≥0A^T u = c,\quad u \ge 0

Correct constraints:

u1≥0u_1 \ge 0
u2≥0u_2 \ge 0
−u1+u2=−1-u_1 + u_2 = -1
u1+2u2=1u_1 + 2u_2 = 1


Question 4

From Question 3 constraints:

u1≥0,u2≥0u_1 \ge 0,\quad u_2 \ge 0

Using ATu=cA^T u = c, solution gives:

u1=1,  u2=0u_1 = 1,\; u_2 = 0

Optimal value:

bTu=1b^T u = 1

Answer: 1


Question 5

Correct statements:

If f(y)≥f(x∗)f(y) \ge f(x^*) for any y∈Rny \in \mathbb{R}^n, then x∗x^* is the global minimum.

❌ Local condition for all r>0r>0 implies global minimum, not “local but not global”

Global minimum must also be local minimum.

If inequality holds in a neighborhood ∥y−x∗∥≤r\|y-x^*\|\le r, then x∗x^* is a local minimum.


Question 6

f(x1,x2)=x12+2x1x2+x23f(x_1,x_2)=x_1^2+2x_1x_2+x_2^3

Gradient = 0 ⇒ critical point at (0,0)(0,0)

f(0,0)=0f(0,0)=0

Local minimum value = 0.00


Question 7

Maximize:

ln⁡x1+ln⁡x2s.t. 2×1+3×2=6\ln x_1 + \ln x_2 \quad \text{s.t. } 2x_1+3x_2=6

Using Lagrange multiplier:

x1=1.5,x2=1x_1=1.5,\quad x_2=1 fmax⁡=ln⁡(1.5)+ln⁡(1)=ln⁡(1.5)f_{\max}=\ln(1.5)+\ln(1)=\ln(1.5) ln⁡(1.5)≈0.41\ln(1.5)\approx 0.41

Global maximum value = 0.41


Final Answers Summary

Question Answer
Q1 Options 2, 3
Q2 u1+u2u_1 + u_2
Q3 u1≥0,  u2≥0u_1 \ge 0,\; u_2 \ge 0
Q4 1
Q5 Options 1, 3, 4
Q6 0.00
Q7 0.41