Skip to content

Module 5 challenge :Regression Analysis: Simplify Complex Data Relationships (Google Advanced Data Analytics Professional Certificate) Answers 2025

1. Binomial logistic regression predicts category using one or more _____ variables.

independent
❌ categorical
❌ dependent
❌ continuous


2. What is the logit formula?

Logarithm of p divided by 1 minus p
❌ Log of 1/p − 1
❌ Log of p+1/p
❌ Log of (1+p)/p


3. MLE is a technique for _____ beta parameters.

estimating
❌ limiting
❌ eliminating
❌ duplicating


4. Linearity assumption: linear relationship with logit of probability that:

Y = 1
❌ X = Y
❌ Y = 0
❌ X = 1


5. Confusion matrix predicts labels for a _____ variable.

categorical
❌ confidence
❌ continuous
❌ correlated


6. Precision formula:

Precision = TP / (TP + FP) = 116 / (116 + 3)
116 / (116 + 3)
❌ 91 / (116 + 3)
❌ (91 + 3) / 116
❌ 116 / (3 + 2)


7. Accuracy formula:

Accuracy = (TP + TN) / Total = (99 + 91) / 248
(99 + 91) / 248
❌ (248 − 99) / 91
❌ 99 / (248 − 91)
❌ 248 / (99 + 91)


8. Recall formula:

Recall = TP / (TP + FN) = 99 / (99 + 4)
99 / (99 + 4)
❌ 80 / (80 + 7)
❌ (84 + 4) / 80
❌ (99 − 7) / (80 − 4)


9. FPR vs TPR graph =

ROC curve
❌ Log-loss curve
❌ Entropy curve
❌ Confusion matrix


10. Aggregate measure over all thresholds =

AUC (Area under ROC)
❌ ROC
❌ Balanced accuracy
❌ Confusion score


🧾 Summary Table of All Answers

Q No. Correct Answer(s) Incorrect Options
1 Independent Categorical, Dependent, Continuous
2 Log(p / (1−p)) Other log formulas
3 Estimating Limiting, Eliminating, Duplicating
4 Y = 1 X=Y, Y=0, X=1
5 Categorical Confidence, Continuous, Correlated
6 116/(116+3) 91/(116+3), (91+3)/116, 116/(3+2)
7 (99+91)/248 Others
8 99/(99+4) Others
9 ROC curve Log-loss, Entropy, Confusion matrix
10 AUC ROC, Balanced accuracy, Confusion score