Module 5 challenge :Regression Analysis: Simplify Complex Data Relationships (Google Advanced Data Analytics Professional Certificate) Answers 2025
1. Binomial logistic regression predicts category using one or more _____ variables.
✔ independent
❌ categorical
❌ dependent
❌ continuous
2. What is the logit formula?
✔ Logarithm of p divided by 1 minus p
❌ Log of 1/p − 1
❌ Log of p+1/p
❌ Log of (1+p)/p
3. MLE is a technique for _____ beta parameters.
✔ estimating
❌ limiting
❌ eliminating
❌ duplicating
4. Linearity assumption: linear relationship with logit of probability that:
✔ Y = 1
❌ X = Y
❌ Y = 0
❌ X = 1
5. Confusion matrix predicts labels for a _____ variable.
✔ categorical
❌ confidence
❌ continuous
❌ correlated
6. Precision formula:
Precision = TP / (TP + FP) = 116 / (116 + 3)
✔ 116 / (116 + 3)
❌ 91 / (116 + 3)
❌ (91 + 3) / 116
❌ 116 / (3 + 2)
7. Accuracy formula:
Accuracy = (TP + TN) / Total = (99 + 91) / 248
✔ (99 + 91) / 248
❌ (248 − 99) / 91
❌ 99 / (248 − 91)
❌ 248 / (99 + 91)
8. Recall formula:
Recall = TP / (TP + FN) = 99 / (99 + 4)
✔ 99 / (99 + 4)
❌ 80 / (80 + 7)
❌ (84 + 4) / 80
❌ (99 − 7) / (80 − 4)
9. FPR vs TPR graph =
✔ ROC curve
❌ Log-loss curve
❌ Entropy curve
❌ Confusion matrix
10. Aggregate measure over all thresholds =
✔ AUC (Area under ROC)
❌ ROC
❌ Balanced accuracy
❌ Confusion score
🧾 Summary Table of All Answers
| Q No. | Correct Answer(s) | Incorrect Options |
|---|---|---|
| 1 | Independent | Categorical, Dependent, Continuous |
| 2 | Log(p / (1−p)) | Other log formulas |
| 3 | Estimating | Limiting, Eliminating, Duplicating |
| 4 | Y = 1 | X=Y, Y=0, X=1 |
| 5 | Categorical | Confidence, Continuous, Correlated |
| 6 | 116/(116+3) | 91/(116+3), (91+3)/116, 116/(3+2) |
| 7 | (99+91)/248 | Others |
| 8 | 99/(99+4) | Others |
| 9 | ROC curve | Log-loss, Entropy, Confusion matrix |
| 10 | AUC | ROC, Balanced accuracy, Confusion score |